Software Requirements Specification (SRS)
Project PhysicsGame

Team: Group 5

Authors: Kyle Marcoux, Mit Bailey, Faycal Fedad, Jamison MacFarland, and
Ian Sodersjerna

Customer: N/A

Instructor: Dr. James Daly

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

1 Introduction

This document will provide all of the information about PhysicsGame. This
covers the project context, audience description, requirements, modeling diagrams, and
prototype information.

Sections:

e Section 1 will cover the basics of the project. It will go over the purpose
of the document, as well as the audience for the document. It will also go
over the scope of the project, identifying the product produced and its
intended goal. Finally it will cover definitions for terms used in the
document, as well as how the rest of the document is organized.

e Section 2 will cover the specifications of the project. It will start with the
perspective for how the final product will be used, and cover any
constraints on the project. It will then cover the function and goals of the
final product’s usage. Finally it covers the user base it is meant for, and
explains the characteristics of the intended average user.

e Section 3 will cover the requirements of the project. It will be in
hierarchical format, with the most important requirements coming first.

e Section 4 is multiple diagrams for how the software will work internally.
It has a use-case diagram, a sequence diagram for every case, a class
diagram, and a state diagram.

e Section 5 is the prototype section. This will cover the current prototype,
scenarios for how the software will be used, and include screenshots of the
current prototype.

1.1 Purpose

This software requirements specification document (SRS) is intended to describe
the product, also referred to as PhysicsGame (working title), the project, or the game.
This SRS document will describe what the product is intended to be, how the game will
work, and what its intended functionality is, including requirements. Provided is a
detailed set of requirements for the game explaining the purpose and features.

This document is intended for members of the development team to be used as a
tool to establish and maintain a working, complete, and consistent understanding of the
product, including how it is expected to perform and what its intended scope of
functionality is. The document is also intended for the commissioning client, Dr. James
Daly, for his review. This document should enable Dr. Daly to understand all the
aforementioned items.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

1.2 Scope

Software products which will be produced include the Unity engine-based
educational video game PhysicsGame. The product’s application includes the
enhancement of understanding of physics concepts for use by students, educators, and
parents in the home and school domains. The game is programmed in C# using the Unity
game engine and is hosted on GitHub.

By providing the user with the ability to interact with a realistic and directed (AKA
‘guided’) physics environment, the user will develop an intuitive understanding of the
causes and effects of such a system, as well as some of the basics of the underlying
mathematics behind it. The system will be presented in a simplified and guided manner.

The product is not intended to teach complex nor advanced physics topics or
concepts. PhysicsGame is also not intended to be challenging, but rather a guided, casual
way to expand one’s basic and beginner physics knowledge.

1.3 Definitions, acronyms, and abbreviations

The product; The game, The project, PhysicsGame — The Unity engine-based educational
physics game which will be produced.

User, player — Whomever is playing the game.

Vehicle — The object the player will move around (may be as complex as a car, or as
simple as a movable shape).

Unity Engine — A game engine in which video games are constructed; in this case, the
game engine employed by PhysicsGame.

SRS - Software Requirements Specification document, this document.

AKA - Acronym for ‘also known as.’

IEEE - Institute of Electrical and Electronics Engineers

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

1.4 Organization

The rest of this SRS document contains descriptions of the product, describing
what the product is intended to be, how the game will work, and what its intended
functionality is, including requirements. Provided is a detailed set of requirements for the
game explaining the purpose and features. Also included are sequence and use case
diagrams explaining how the product will function. Finally, screenshots have been added
to show what the user will see upon entering the game.

The SRS document is structured in standard IEEE format. Below is the
organizational structure.

1. Intro
1.1 Purpose
1.2 Scope
1.3 Definitions
1.4 Organization

2. Opverall Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions

3. Specific Requirements
4. Modeling Requirements
5. Prototype information

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

2 Overall Description

Summary of Section 2
2.1 Perspective: The context for the project.
2.2 Functions: The goal of the project.
2.3 User Characteristics: The intended users of the product.
2.4 Constraints: Limitations on the project.

2.5 Assumptions: Things that are assumed for the project.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

2.1 Product Perspective

PhysicsGame is intended to bridge the gap between formal in-school learning and
intuitive understanding. The game can be deployed either in a classroom by an educator,
at home by a parent, or by a student themselves in their spare time. All they require is a
working computer setup. The game should allow the user to expand their knowledge of
physics-based systems, incorporating some simple mathematics — which they may have
learned in the classroom. Students will leave this game feeling more confident in physics.

Design Constraints:

e Education-based game, meaning it will focus on teaching physics
to the user.

e While being focused on education, it cannot get in the way of the
user having fun

e Users must be able to easily understand how to play the game so
they can focus on learning.

Hardware Constraints:

e Supports mouse and keyboard
e Supports low-end desktop computers

Software Constraints:

e Programmed and built using the Unity Engine
e Targeted for deployment on Windows machines.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

2.2 Product Functions

The primary function of the game is to educate children grade 4 — 6 on basic
physics concepts. It will do so using a game where the user tries to get a vehicle to a goal,
using the game's lessons on basic physics concepts. The goal is to show users basic
physics concepts, and have the game reinforce their learning by letting them put what
they have learned into practice.

Goal Diagram:

Teacher shows

students to teach
physics concepts

Student does not ;
understand student pays | o “TEE" Lol contigent
phy=zics concepts game concepts school

Student wizhes to

learn more about
physics

2.3 User Characteristics

The targeted demographic is anyone with access to a computer capable of running
the game and meeting the basic requirements assumed in section 2.4. No prior special
physics expertise is expected nor required, however, the user is expected to understand
basic mathematics, cause and effect, and have the educational attainment equivalent to a
child aged in equivalence with that of a student attending American grades 4 - 6.

Expectations of the user:
e Child, possibly student, aged equivalent to those in US grades 4 through 6.
e Little to no understanding of physics except basic concepts and a general awareness.

e Basic computer operation abilities.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

2.4 Constraints
Regulatory Policies
e Must be Educational
Hardware Limitations
e Developed for low-end Desktop Computers
Interface Limitations
o Works on website and with Github for version control
Reliability requirements

e Must be stable with little to no software errors

PhysicsGame has no safety-critical properties.

2.5 Assumptions and Dependencies

Assumptions of the user:

e Working computer

e Functioning Windows 7 (or newer) operating system.
e Working monitor, mouse and keyboard.

e The User’s computer is capable of running basic video games for at least 15 minutes
at a time.

o The User is able to play games for at least 15 minutes at a time.

e User is a child, possibly a student, aged equivalent to those in US grades 4 through 6.
e User has an interest in learning physics.

e User is capable of operating a computer with a mouse and keyboard.

e User has basic video game experience or ability.

2.6 Apportioning of Requirements

This project does not have any requirements that are beyond the scope of the
project.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

3 Specific Requirements

1. Must be interactive and responsive to user
2. Must be suitable for students from 4th-6th
2.1 Easy to understand core concepts
2.1.1 Gravity
2.1.2 Friction
2.1.3 Acceleration

3. Must have an educational component
3.1 Teach the user each concept they need to complete the level
3.2 Pop-up lesson available for each concept

Must be constrained to 2D physics model

Must be physics-oriented

Must have user-controlled vehicle

Must have variable parameters on simulation
7.1 Must be able to tweak parameters of vehicle
7.2 Must be able to tweak parameters of world

Nowns

8. Must have responsive audio
9. Must have at least two levels
9.1 Levels must have win conditions
9.2 Levels must have failure conditions
9.3 Must have difficulty get progressively harder with each level
9.4 Must have unlockable tools and parts
10. Must have menu functionality
10.1 Must be able to start level
10.1 Must be able to pause level
10.1 Must be able to reset level
10.1 Must be able to quit game
10.1 Must be able to change level
10.1 Must be able to able to control volume
11. Must provide the physics lessons to understand the levels
11.1 Must have tool tips
11.2 Must have hints on failure condition

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

4 Modeling Requirements

Play Simulation

Pause Simulation

N
g |[1k
;|

Reset Simulation

Change Level

Exit Game

@

xends«{ Vehicle reaches goal

Extends

Unlock Level

Use Case Diagram. Standard UML notation.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 11/10/2021 3:03 PM

Use Case Name:

Modify Vehicle Parameters

Actors:

Player

Description:

Player uses Ul to add, remove, or change vehicle attachments and attributes.

Type:

Function

Includes:

Extends:

Cross-refs:

Uses cases:

Game

GUI Level Map Vehicle

P;y_er:

Add vehicle attachment

Remove vehicle attachment

Add attachment . =D

Modify vehicle parameten

Remove attachment |

L J

Maodify parameter . D

Modify Vehicle Parameters sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Use Case Name: Modify World Parameters

Actors: Player

Description: Player uses UI to change physics parameters within the in-game world.
Type: Function

Includes:

Extends:

Cross-refs:

Uses cases:

i Game GUI Level Map Vehicle
Player . : : . .

Modify World Parameters
- Modify Parameters

Modify World Parameters sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Use Case Name:

Play Simulation

Actors: Player

Description: Player uses UI to begin the physics simulation.

Type: Function

Includes: Modify Vehicle Parameters, Modify World Parameters
Extends:

Cross-refs:

Uses cases:

i’r:’yg.»r:

Play Simulation sequence diagram.

Game GUI Level Map Vehicle
Play Simulation M A — il
: Play
Loop Time Step
Update position.
Collide with Map
Goal Reached: Bool
| Step done, Goal Reached: Bool
g s oo 000 s E T gE——— - o+ o 03 o &

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 1

1/10/2021 3:03 PM

Use Case Name:

Vehicle reaches goal

Actors:

Description: Player vehicle successfully fulfils the level’s goal condition (reaches goal
Type: Function

Includes:

Extends: Play Simulation

Cross-refs:

Uses cases:

PI;y_er:

Game GUI Level Map Vehicle
Collide with Map
4 —————
Goal Reached: Bool
< Step Done, Goal Reached: Bool

Goal:Reached = True

Goal Reached

Pause Simulation

Vehicle Reaches Goal sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/10/2021 3:03 PM

Use Case Name: Pause Simulation
Actors: Player
Description: Player uses UI to pause the physics simulation
Type: Function
Includes:
Extends: Play Simulation
Cross-refs:
Uses cases:
% GUI Level
Player

Pause Button

L

Pause Simiulation

Pause Simulation sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Pause Simulation

Revised: 11/10/2021 3:03 PM

Use Case Name:

Reset Simulation

Actors: Player
Description: Player uses Ul to reset the physics simulation, moving the vehicle back to the
start location and removing progress made since the last start.
Type: Function
Includes:
Extends: Play Simulation
Cross-refs:
Uses cases:
Game GUI Level
ayer " . '
i Changes lev el in GUI i : i
' : »r :
H i terminates lev el H
E E starts the same level
! ! > Level
Reset Simulation sequence diagram.
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Use Case Name:

Change Level

Actors: Player
Description: Player uses the Ul to change the current game level.
Type: Function
Includes:
Extends:
Cross-refs:
Uses cases:
i Game GUI Level
Player . .
' [.‘tmm;n: Level iy

Change Level sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Kill Level x

Load Level

Level

Revised: 11/10/2021 3:03 PM

Use Case Name: Unlock Level
Actors:
Description: Player has unlocked a new level.
Type: Function
Includes: Change Level
Extends: Vehicle Reaches Goal
Cross-refs:
Uses cases:
Game GUI Level
r '
> '

Level is started

Lev el is Completed

Unlock next lev el

Unlock Level sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Use Case Name: Exit Game
Actors: Player
Description: Player uses the Ul to exit the game, stopping all running processes.
Type: Function
Includes:
Extends:
Cross-refs:
Uses cases:
Game GUI
ayer

User presses exit button

Quit calls game to terminate

Exit Game sequence diagram.

terminate()

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 11/10/2021 3:03 PM

- Game

+ U Ul

+ Current_Level: Level

1 + Levels: Level [] —‘
: S

= ul = Level

+ Start_Button: Button + Vehicle: Vehicle

+ Pause_Button: Button + Map: Map

+ Reset_Button: Button + Start_Point. Vector2

+ Exit_Button: Button + End_Point: int

+ Select_Level_Button: Button 1 1
) Vehicle =l Map
+ Visual: Sprite + Friction: int
+ \Weight: int
+ Friction: int

+ Velocity: Vector2

+ Location: Vector2

+ Acceleration: Viector2

+ Aftachment_peints: Wector2 []

+ Aftachments: Attachment[] ———0.*

+Update()

Attachment

+ Visual: Sprite
+ Vehicle: Viehicle

+ Attachment_point: Vector2

+ Update()
I
= = Fan = -
= Jet = Big_wheels
e + Acceleration: int A
+ Acceleration:int +Friction: int
; + Fuel: int
+ Fuel: int

Class Name: | Game

Description: | The class that represents Unity’s game engine

Extends:

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Attributes: Ul Ul The Games main Ul
Current_Level | Level The Currently selected level
Levels Level[| The List of available levels

Operations:

Class Name: | Ul

Description: | The class that represents the User Interface

Extends:

Attributes: Start_button Button | Button to start the game.
Pause_button Button | Button to pause the game.
Reset_button Button | Button to reset the game.
Exit_button Button | Button to exit the game.
Select_level_button | Button | Button to select the game level.

Operations:

Class Name: | Level

Description: | The container that represents level in a game and contains all necessary
elements for a level

Extends:

Attributes: Vehicle Vehicle Player controlled vehicle.
Map Map Map the vehicle will drive on.
Start_Point Vector2 Location the vehicle starts
End_Point Vector2 Location the vehicle must get to to end

the Level
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Operations:

Class Name: | Map

Description: | Represents a level, can have different terrain with different attributes such as
friction and slope.

Extends:

Attributes: Friction int The frictional coefficient of the map on

the vehicle

Operations:

Class Name: | Vehicle

Description: | The Vehicle class represents the controllable vehicle that the user uses to
complete a level

Extends:

Attributes: Visual Sprite Visual representation of the vehicle.
Weight int Weight of the vehicle.
Friction int Frictional coefficient of the vehicle.
Velocity Vector2 Current velocity of the vehicle.
Location Vector2 Current Location of the vehicle
Acceleration Vector2 Current Acceleration of the vehicle
Attachment_po | Vector2 [] Attachment points on the vehicle
ints
Attachments Attachment [| | Attachments installed on the vehicle.

Operations: | Update() A Unity function called once per

frame, used to calculate velocity,
location and acceleration using,

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 11/10/2021 3:03 PM

weight, friction, and attachments

Class Name: | Attachment

Description: | The abstract class that represents an attachment that changes the properties of a
vehicle

Extends:

Attributes: Visual Sprite Visual representation of a attachment
Vehicle Vehicle Vehicle the Attachment is attached to
Attachment_po | Vector2 The location of the attachment on the
int Vehicle

Operations: | Update() A Unity function called once per frame,

used by inheriting classes to update
parameters

Class Name: | Jet

Description:

Extends: Attachment

Attributes: Acceleration Vector2 Acceleration applied by jet
Fuel int Fuel level in percentage (0-100)

Operations: | Update() A Unity function called once per frame,

used to update remaining fuel.

Class Name: | Fan

Description:

Extends: Attachment

Attributes: Acceleration Vector2 Acceleration applied by fan

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 11/10/2021 3:03 PM

Fuel int Fuel level in percentage (0-100)
Operations: | Update() A Unity function called once per frame,
used to update remaining fuel.
Class Name: | Big_wheels
Description:
Extends: Attachment
Attributes: Friction int Represents the frictional coefficient of the
big wheels on a surface
Operations:
Settings
Cancel/Confirm Settings
Changing Settings
P
Presses Play
» PlayGame Opens Lev el
— | —
Runs—» Opens Menu Unlocks next lev el
Menu Level Next Level
Terminates i >
ry A Level Select A
Level Select
——————"0Opens Level Loads Map Unloads map
Quits l
Pauses Game
Quits Game | <
GUI Map
= >
Resumes Game
Loads Unloads
State Diagram

Vehicle

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 11/10/2021 3:03 PM

5 Prototype

The prototype will be presented as a standalone executable built targeting
Windows. It will allow the user to open levels and adjust settings through a main
menu. Once the player loads into the selected level, they will be able to play, using
physics to solve levels. This will consist of demonstrating basic physics concepts in
an interactive manner, building up to the driving of a vehicle to a designated goal,
which will require the implementation of learned physics concepts to complete
successfully. The prototype will therefore demonstrate the entire core infrastructure
and implementation of PhysicsGame.

5.1 How to Run Prototype

The PhysicsGame prototype can be run by visiting the GitHub repository
hosted at www.github.com/KyleM?21/PhysicsGame and switching to the release
branch. Then, once this branch is downloaded as a zip and extracted or,
alternatively, cloned, the executable can then be run. PhysicsGame should then
boot to the Main Menu.

These instructions are also available in the README.md files within the
repository. Links to the repository are also available through the website.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

http://www.github.com/KyleM21/PhysicsGame

5.2 Sample Scenarios

Example Scenario 1:

The user opens up the website and starts the game. They hit play and will
start from level 1. Level 1 will consist of getting a vehicle to a goal, and the user
will have to figure out how to make it happen. Upon completion of this level, the
user will be allowed to move on to level 2. Completion of these levels will
require the modification of the vehicle in some way. There will be lessons on the
concepts used in each level available to the user.

Example Scenario 2:

The user downloads and runs the game on their computer. They are
greeted by the main menu, and decide to tweak some settings before beginning
play. They click on the settings button which activates the settings menu. They
then adjust the volume using a slider, and press the back button to return to the
main menu. They then press Play to begin a new game. They are then presented
with Level One, which involves driving a vehicle to a destination using physics
concepts. They are guided by text which appears and disappears as they continue
through the level. Once the vehicle has successfully reached its goal in the game
world, the level completes and loads the next level, level two. This continues
similarly until the player presses Escape and Quit to Desktop, which exits the
game, or completes all levels, at which point they are returned to the Main Menu.

On the next page you will see screenshots of the latest prototype.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

PhysicsGame

Created by Mit Bailey, Faycal Fedad, Jamison MacFarland, Kyle Marcoux, and lan Sodersjerna

LEVEL SELECT

SETTINGS

QUIT

This is the main menu, the user has four options: Play, Level Select, Settings, and Quit

Begin Level

This is two balls bouncing on a platform. This is purely for testing purposes and will not
be included in the final build

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Level Select

Level One Level Two Level Three

This is the level selection menu, the user can pick the level they wish to play and the game
will bring them to it.

Settings

Master Volume
ﬁ_
Music Volume
ﬁ_
Effects Volume
ﬁ_

® Enable Extra Hints

.

! &

This is the settings menu, the user can customize volume and enable extra help.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

6 References

[1] Project Website: https://kylem?21.github.io/PhysicsGame/
[2] Project Repository: https://github.com/KyleM21/PhysicsGame

[3] Official IEEE SRS Document Template. IEEE Std 830-1998. 11/12/2021. IEEE
Comp. Society. http://www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

7 Point of Contact

For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

https://kylem21.github.io/PhysicsGame/
https://github.com/KyleM21/PhysicsGame
http://www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

