Software Requirements Specification (SRS)
Project PhysicsGame

Team: Group 5

Authors: Kyle Marcoux, Mit Bailey, Faycal Fedad, Jamison MacFarland, and
Ian Sodersjerna

Customer: N/A

Instructor: Dr. James Daly

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

1 Introduction

This document will provide all of the information about PhysicsGame. This
covers the project context, audience description, requirements, modeling diagrams, and
prototype information.

Sections:

e Section 1 covers the basics of the project. It goes over the purpose of the
document, as well as the audience for the document. It also goes over the
scope of the project, identifying the product produced and its intended
goal. Finally, it covers definitions for terms used in the document, as well
as how the rest of the document is organized.

e Section 2 covers the specifications of the project. It begins with the
perspective for how the final product will be used, and covers any
constraints on the project. It then covers the function and goals of the
final product’s usage. Finally it covers the user base it is meant for, and
explains the characteristics of the intended average user.

e Section 3 covers the requirements of the project. It is in hierarchical
format, with the most important requirements coming first.

e Section 4 contains multiple diagrams for how the software will work
internally. It has a use-case diagram, a sequence diagram for every case, a
class diagram, and a state diagram.

e Secction 5 is the prototype section. This covers the current prototype,
scenarios for how the software will be used, and includes screenshots of
the current prototype.

1.1 Purpose

This software requirements specification document (SRS) is intended to describe
PhysicsGame. This SRS document will describe what PhysicsGame is intended to be,
how it will work, and what its intended functionality is, including requirements. Provided
is a detailed set of requirements for the game explaining the purpose and features.

This document is intended for members of the development team to be used as a
tool to establish and maintain a working, complete, and consistent understanding of the
product, including how it is expected to perform and what its intended scope of
functionality is. The document is also intended for the commissioning client, Dr. James
Daly, for his review. This document should enable Dr. Daly to understand all the
aforementioned items.

1.2 Scope

PhysicsGame is a Unity engine-based educational video game. PhysicsGame’s
application includes the enhancement of understanding of physics concepts for use by

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

students, educators, and parents in the home and school domains. The game is
programmed in C# using the Unity game engine and is hosted on GitHub.

By providing the player with the ability to interact with a realistic and directed
(AKA ‘guided’ via the use of pop-up hints) physics environment, the player will develop
an intuitive understanding of the causes and effects of such a system, as well as some of
the basics of the underlying mathematics behind it. The system will be presented in a
simplified and guided manner.

PhysicsGame is not intended to teach complex nor advanced physics topics or
concepts. PhysicsGame is also not intended to be challenging, but rather a guided, casual
way to expand one’s basic and beginner physics knowledge.

1.3 Definitions, acronyms, and abbreviations

PhysicsGame — The Unity engine-based educational physics game which will be
produced.

Player — Whomever is playing the game.
Vehicle — The object the player will move around.

Unity Engine — A game engine in which video games are constructed; in this case, the
game engine employed by PhysicsGame.

SRS document - Software Requirements Specification document, this document.

Project - The process of development that will produce PhysicsGame and the SRS
document.

AKA - Acronym for ‘also known as.’
IEEE - Institute of Electrical and Electronics Engineers

GUI - Graphical User Interface, the buttons and text that a user sees and interacts with.

1.4 Organization

The remainder of this SRS document contains descriptions of PhysicsGame,
describing what it is intended to be, how the game will work, and what its intended
functionality is, including requirements. Provided is a detailed set of requirements for
PhysicsGame explaining the purpose and features. Also included are sequence and use
case diagrams explaining how the product will function. Finally, there are screenshots to
show what the player will see upon entering PhysicsGame.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

The SRS document is structured in standard IEEE format. Below is the
organizational structure.

1. Intro - Discussion of the document
1.1 Purpose - The purpose of the SRS document
1.2 Scope - The name of the project and its application
1.3 Definitions - Terminology used in the document
1.4 Organization - Structure of the document
2. Overall Description - Brief introduction of Section 2
2.1 Product Perspective - The context for the project
2.2 Product Functions - The functions and goal of the project
2.3 User Characteristics - The intended users of the final product
2.4 Constraints - Limitations on the project
2.5 Assumptions - Assumptions that are made of the project
3. Specific Requirements - Requirements of the project
Modeling Requirements - Diagrams for how the project will work
5. Prototype information - Discussion on the product prototype

o

2 Overall Description
Summary of Section 2

Section 2.1 will be going over the intent of the project and the constraints that will
need to be followed as PhysicsGame is developed. Section 2.2 is about the function that
PhysicsGame will serve, this will then go over the primary function that the final product
will serve, and show the reader a goal diagram. Section 2.3 contains details on the
intended audience for the product. Section 2.4 goes over the constraints on the project.
Section 2.5 is the final section and will be covering all of the things the team will assume
of the end-users.

2.1 Product Perspective

PhysicsGame is intended to bridge the gap between formal in-school learning and
intuitive understanding. The game can be deployed either in a classroom by an educator,
at home by a parent, or by a student themselves in their spare time. All they require is a
working computer setup. The game should allow the user to expand their knowledge of
physics-based systems, incorporating some simple mathematics — which they may have
learned in the classroom. Students will leave this game feeling more confident in
physics.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Design Constraints

PhysicsGame is an education-based video game with a focus on physics concepts,
meaning it will teach physics to the player through interactivity. The educational aspects
of PhysicsGame, while important, cannot get in the way of the user having fun. Players
must be able to easily understand how to play the game so they can focus on learning.

Hardware Constraints

PhysicsGame needs to use a mouse and keyboard for playing the game.
It must also run on older hardware and laptops to allow more players to be able to run and
play PhysicsGame.

Software Constraints

PhysicsGame will be built on the unity engine, and must function when deployed
on a Windows system.

2.2 Product Functions

The product being produced will be a physics learning game called PhysicsGame.
This game will feature multiple levels where the player is given a vehicle to control, with
the goal of making it down a slope and passing a goal. Completing these levels will
require the user to consider the different attachments available, what they will change
about the vehicle, and pick the best one.

The primary function of the game is to educate children grade 4 — 6 on basic
physics concepts. It will do so using a game where the user tries to get a vehicle to a goal,
using the game's lessons on basic physics concepts. The goal is to show users basic
physics concepts, and have the game reinforce their learning by letting them put what
they have learned into practice.

While playing the game, hints will appear in each level. These hints will provide
information on the level, including possible strategies for reaching the end goal as well as
the basic physics concepts behind each level’s design. It may be necessary for the player
to grasp each concept prior to successfully completing the level. The player will then,
through interacting with the game, be able to see for themselves how these concepts
come into play.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Goal Diagram:

Teacher shows

students to teach
physics concepts

Student does not ;
understand student plays || RSO | S et
phy=zics concepts game concepts school

Student wishes to

learn more about
physics

High-Level goal diagram.

2.3 User Characteristics

The targeted demographic is young students with access to a computer capable of
running the game and meeting the basic requirements assumed in section 2.4. No prior
special physics expertise is expected nor required, however, the user is expected to
understand basic mathematics, cause and effect, and have the educational attainment
equivalent to a child aged in equivalence with that of a student attending American
grades 4 - 6.

Expectations of the user:

e Child, possibly student, aged equivalent to those in US grades 4 through 6.

e Little to no understanding of physics except basic concepts and a general awareness.
e Basic computer operation abilities.

2.4 Constraints

Regulatory Policies
e Must be focused on being an educational game, with a purpose of teaching
the user about basic physics.

Hardware Limitations
e Developed to run on both old and new desktop computers, the final

product must run on the older desktops that most schools use in computer
labs.

Interface Limitations
e Must have a download link on the website,

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

e Must support proper version control with Github in order to be developed
by multiple people.

Reliability requirements
e Must be stable with little to no software errors

PhysicsGame has no safety-critical properties.

2.5 Assumptions and Dependencies

Assumptions of the player’s hardware:

e Working computer

e Functioning Windows 7 (or newer) operating system.

e Working monitor, mouse and keyboard.

e The player’s computer is capable of running basic video games for at least 15 minutes
at a time.

Assumptions of the player:

e The player is able to play games for at least 15 minutes at a time.

e Player is a child, possibly a student, aged equivalent to those in US grades 4 through
6.

e Player has an interest in learning physics.

Player is capable of operating a computer with a mouse and keyboard.

e Player has basic video game experience or ability.

2.6 Apportioning of Requirements

Some features are out of the scope of this project or are best left to a later, more
complete version of PhysicsGame. This includes the final name of PhysicsGame, more
advanced in-game graphics, and additional physics concepts. Another feature which will
be left to a later version is more expansive levels and interactive hints, which would
require the player to enter an answer to a physics-based question prior to continuing. A
specific GUI for enabling and disabling vehicle attachments will be available in future
versions when more levels are offered.

3 Specific Requirements

1. Must be interactive and responsive to player

1. Provides feedback to the player

2. Allows the player to interact with the game
2. Must be suitable for students from 4th-6th

2.1 Concepts must be easy to understand

2.2 Three concepts must be present:

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

1. Gravity
2. Friction
3. Acceleration
3. Must have an educational component
3.1 Teach the user each concept they need to complete the level
3.2 Pop-up lesson available for each concept
4. Must be constrained to a 2D world in Unity
5. Must have user-controlled vehicle
6. Must have variable parameters on simulation
7.1 Must be able to modify vehicle
7.1.1 Must have at least three modifications of some kind
7. Must have audio feedback
8. Must have at least two levels
9.1 Levels must have win conditions
9.2 Levels must have failure conditions
9.3 Must have difficulty get progressively harder with each level
9.4 Must have unlockable tools and parts
9. Must have a menu or menus which enable the following functionality:
10.1 Must be able to start level
10.1 Must be able to pause level
10.1 Must be able to reset level
10.1 Must be able to quit game
10.1 Must be able to change level
10.1 Must be able to able to control volume
10. Must provide the physics lessons to understand the levels
11.1 Must have tool tips
11.2 Must have hints on failure condition

4 Modeling Requirements

This section contains the Use Case and Sequence Diagrams in section 4.1, followed by
Class Diagrams in section 4.2, and State Diagram in section 4.3.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

4.1 Use Case Diagrams
Below is the master Use Case Diagram, followed by a series of breakout tables
describing each use case with its Sequence Diagram.

Game]

Maodity vehicle
Parameters

|n€|ude-s
Modity world Parameters | "
%/ Iklw#.-'
Play Simulation
Vehicle reaches goal

Extends, .-
Pause Simulation o

Extends

Esuel-ncs
Reset Simulation
Change Level Ja---ccevenencnees Ancludesy=---s=ssersnnans-

Master Use Case Diagram. Standard UML notation. Shows the interaction cases between
the Player actor and the game itself, as well as pertinent cases relevant to the user
experience which may not require direct player interaction.

4.1.1 Modify Vehicle Parameters

The Player uses the game GUI to add, remove, or edit the Vehicle attachments and
attributes.

Use Case Name: Modify Vehicle Parameters

Actors: Player

Description: Player uses GUI to add, remove, or change Vehicle attachments and attributes.
Type: Function

Includes:

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Extends:

Cross-refs:

Uses cases:

4.1.2 Modify World Parameters

The Player uses the game GUI to modify the physics parameters of the game Level,
altering the motion of the Vehicle and its path through the Level and affecting its
prospects for reaching the Goal.

Use Case Name:

Modity World Parameters

Actors:

Player

Description:

Player uses GUI to change physics parameters within the game Level.

Type:

Function

Includes:

Extends:

Cross-refs:

Uses cases:

4.1.3 Play Simulation

The Player clicks the Play Button overlaid on a paused Level. This hides the Play Button,
then causes the Level physics simulation to begin, enabling Vehicle movement and
interaction with the Map. During the simulation, if the Map interaction indicates the Goal
has been reached, the Vehicle Reaches Goal case occurs.

Use Case Name:

Play Simulation

Actors:

Player

Description: Player uses GUI to begin the physics simulation.

Type: Function

Includes: Modify Vehicle Parameters, Modify World Parameters

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Extends:

Cross-refs:

Uses cases:

P}_é}f:er:

¢ Play Simulation

GUI Level Map Vehicle
_:| Hide Play Button ! i i
Py | | |
Loop J i i
: L

Time Step

€ _____

Collide with Map

Goal Reached: Bool

Step done, Goai Reached: Bool

________________ e

e

Play Simulation sequence diagram.

4.1.4 Vehicle Reaches Goal

The Level physics simulation has run and the Vehicle has successfully reached the goal
condition. The simulation is paused, the Player is notified via the GUI that the goal has
been met, and the next Level and/or Attachment is unlocked for the Player.

Use Case Name:

Vehicle reaches goal

Actors:

Description: Player vehicle successfully fulfils the level’s goal condition (reaches goal
location).

Type: Function

Includes:

Extends: Play Simulation

Cross-refs:

Uses cases:

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/10/2021 3:03 PM

Level Map Vehicle

o

2

133

-1: U
]
=

Collide with Map

Goal Reached: Bool

= Step Done, Goal Feached: Bool

Goal Reached

Goal Reached = True E

e e N N .

________________________4

Vehicle Reaches Goal sequence diagram.
4.1.5 Pause Simulation
The Player pauses the simulation, using either the ESC key or the GUI Pause Button. In

addition to pausing, this action also brings up the GUI ESC Menu, allowing the Player to
Resume, Restart, go to the Main Menu, or Quit the Game.

Use Case Name: Pause Simulation

Actors: Player

Description: Player pauses the physics simulation.

Type: Function

Includes:

Extends: Play Simulation

Cross-refs:

Uses cases:

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

X

Pla.f‘_i,fer

! Pause Button [ESC .

GUI Level

I.________

Pause Simulation

Pause Simulation
return

Pause Simulation sequence diagram.

4.1.6 Reset Simulation

The Level simulation is reset, moving the vehicle back to the start location and removing
any progress made since the last start. This is accomplished by terminating the existing
Level, and spawning a fresh copy of it. This Case may be activated automatically when
the Game determines Vehicle Does Not Reach Goal, or manually by the Player selecting
to Reset Level through the UL

Use Case Name: Reset Simulation

Actors: Player

Description: Physics simulation is reset, moving the vehicle back to the start location and
removing progress made since the last start.

Type: Function

Includes:

Extends: Play Simulation

Cross-refs:

Uses cases:

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Game GUI Level

ayer ; - .

: Changes lev el in GUI : : :

; ' »rh :

: : terminates lev el :

1] iy

1 1 N

E E starts the same level

! ! » Level
Reset Simulation sequence diagram.
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

4.1.7 Change Level

The Player starts at the Main Menu, and opens the Level Select Menu. The Player then

selects a Level to load from the available Levels.

Use Case Name: Change Level
Actors: Player
Description: Player uses the GUI to change the current game level.
Type: Function
Includes:
Extends:
Cross-refs:
Uses cases:
i Game GUI Level
Phayer

i
Open Level Select Menu

i
i:‘:_et Available Levels

|

Select II_.f_"'.-'val

Change Level sequence diagram.

Load Level

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

L J

Revised: 11/10/2021 3:03 PM

4.1.8 Unlock Level

This Case covers the beginning and completion of a Level, while abstracting away the
actual details inside the Level. The Player uses the GUI to begin a Level, then eventually,
if the Player completes the Goal, the Level returns, prompting the Game to unlock the
next Level.

Use Case Name: Unlock Level
Actors:
Description: Player has unlocked a new level.
Type: Function
Includes: Change Level
Extends: Vehicle Reaches Goal
Cross-refs:
Uses cases:
i Game GUI Level
Phiyer - . .
Load Level N : i
1 i Ll i
"“ Load Level i
el i
Crea_te Level o
: L
i
i
i
Level Completed
S el R R o
'
Unlock Mext Level

Unlock Level sequence diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

4.1.9 Exit Game

The Player uses the GUI (either the Main Menu Quit button, or the ESC Menu Quit
button) to quit the game.

Use Case Name: Exit Game
Actors: Player
Description: Player uses the GUI to exit the game, stopping all running processes.
Type: Function
Includes:
Extends:
Cross-refs:
Uses cases:
i Game GUI Level Map Vehicle
Player : : ' : '
H Quit Game . i i
Quit : E

Unload Vehicle

Unload Map -
OO ...

i Unload GUI i X

———*

Quit X

e
Exit Game sequence diagram.
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

4.2 Class Diagrams

ul

+ Start_Button: Button

+ Pause_Button: Button

+ Reset_Button: Button

+ Exit_Button: Button

+ Select_Level_Button: Button

+ Credits_Button: Button

+ Start()
+ ResetMenu()
+ LoadLevel(Level:Lavel)

+ LoadMainMenu()

+ SetVolume()

Template based on IEEE Std 830-1998 for SRS. Modifications

Map

+ Sprite: Sprite
+ Bounce: float

+ Friction: float

Game
+ Start()
+Update()
Level
+ Start_Point: Vector2
+ End_Point: float
+ Timescale: float
+ Start()
Sed +Update()
+ Sled_sprite: Sprite
+ Weight: float
+ Friction: float
+ Velocity: Vector2
+ Location: Vector2
+ Acceleration: Vector2
+ Rigidbody: RigidBody2D
Attachment

+ Collider: Polygon_Collider2D

+ Start()

+Update()

(content and ordering of information)

+ Jet_sprite: Sprite

+ Jet_enabled: bool

+ boost_force: float

+ Helicopter_sprite: Sprite
+ Helicopter_enabled: bool
+ Lift_strength: float

+ Roll_strength: float

+ lce_sleds_sprite: Sprite

+ lce_sleds_enabled: bool
+ Starting_fuel: float

+ Current_fuel: float

+ Fuel_drain: float

+ Start()

+ Update()

Revised

: 11/10/2021 3:03 PM

4.2.1 Game

Class Name: | Game
Description: | The class that represents Unity’s game engine
Extends:
Attributes:
Operations: | Update() A Unity function called once per frame,
used by unity
Start() A Unity function called before the first
frame updates, used by unity
4.2.2 Ul
Class Name: | Ul
Description: | The class that represents the User Interface
Extends:
Attributes: Start button Button [Button to start the game.
Pause button Button | Button to pause the game.
Reset button Button | Button to reset the game.
Exit button Button | Button to exit the game.
Select level button | Button | Button to select the game level.
Credits_button Button [Button to load the game credits.
Operations: | Start() A Unity function called before the first
frame updates, used to setup GUI
elements
ResetMenu() Reset menu states
LoadLevel() Load a level
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

LoadMainMenu() Load the main menu

SetVolume() Set the game volume

4.2.3 Level

Class Name: | Level

Description: | The container that represents level in a game and contains all necessary
elements for a level

Extends:
Attributes: Timescale float Current timescale of the game.
Start Point Vector2 Location the vehicle starts.
End Point Vector2 Location the vehicle must get to to end
the Level.
Timescale Float Timescale game is currently running at.
Operations: | Update() A Unity function called once per frame
Start() A Unity function called before the first
frame updates
4.2.4 Map

Class Name: | Map

Description: | Represents a level, can have different terrain drawn with a sprite shape renderer
that can have different attributes such as friction and slope.

Extends:
Attributes: Friction Float The frictional coefficient of the map on
the vehicle.
Sprite Sprite shape | Renderer for the level sprite
_renderer
Bounce Float A value that represents how bouncy the
map is.
Operations: | Update() A Unity function called once per frame
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

Start() A Unity function called before the first
frame updates

4.2.5 Sled

Class Name: | Sled

Description: | The Sled class represents the controllable vehicle that the user uses to complete
a level

Extends:

Attributes: SledSprite Sprite Visual representation of the vehicle.
Weight Float Weight of the vehicle.
Friction Float Frictional coefficient of the vehicle.
Velocity Vector2 Current velocity of the vehicle.
Location Vector2 Current Location of the vehicle
Acceleration Vector2 Current Acceleration of the vehicle.
Rigidbody Rigidbody2D | Unity builtin for applying physics to

game object.
Collider Polygon_ Colli | Unity builtin for giving a sprite a
der2D collider.

Operations: | Update() A Unity function called once per
frame, used to calculate velocity,
location and acceleration using,
weight, friction, and attachments.

Start() Unity function called before the first
frame update, used to set up sled.
Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

4.2.6 Attachment

Class Name: | Attachment
Description: | The abstract class that represents an attachment that changes the properties of a
vehicle
Extends:
Attributes: Jet_sprite Sprite | Visual representation the jet attachment
Jet_enabled Bool Determines if the jet is enabled and able to
be seen.
Boost force Float Determines boosting force for the jet
Helicopter_sprite Sprite | Visual representation the helicopter
attachment
Helicopter enabled | Bool Determines if the helicopter is enabled and
able to be seen.
Lift strength Float Determines lift force for the helicopter
Roll strength Float Determines roll force for the helicopter
Ice sleds_sprite Sprite | Visual representation the Ice Sleds
attachment
Ice sleds enabled | Bool Determines if the Ice Sleds is enabled and
able to be seen.
Starting_fuel Float Determines the starting fuel for the
helicopter and jet.
Current_fuel Float Determines the current fuel for the
helicopter and jet.
Fuel drain Float Determines the fuel drain for the helicopter
and jet.
Operations: | Update() A Unity function called once per frame,
used by inheriting classes to update
parameters.

Template based on IEEE Std 830-1998 for SRS. Modifications

(content and ordering of information)

Revised: 11/10/2021 3:03 PM

Start()

Unity function called before the first frame
update, used to set up attachments.

4.3 State Diagram

Cancel/Confirm Settings

Settings

Changing Settings

—

Presses Play -
» Play Game

_—

Unlocks next lev el

Opens Level

Runs—>» Opens Menu
Menu
Terminates
R
F Y A
Quits
Quits Game

A

Level Next Lev el
T >
Lev el Select

A
I—) Level Select

State Diagram in Standard UML notation.

—————————"0Opens Level Loads Map Unloads map
f— Pauses Game L
i
Y
GUI Map
.
l >
Resumes Game

Loads Unloads

“

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM

(content and ordering of information)

S Prototype

The prototype will be presented as a standalone executable built targeting
Windows. It will allow the user to open levels and adjust settings through a main menu.
Once the player loads into the selected level, they will be able to play, using physics to
solve levels. This will consist of demonstrating basic physics concepts in an interactive
manner, involving the driving of a vehicle to a designated goal, which will require the
implementation of learned physics concepts to complete successfully. The prototype will
therefore demonstrate the core infrastructure and implementation of PhysicsGame.

5.1 How to Run Prototype

The PhysicsGame prototype can be run by visiting the GitHub repository hosted
at www.github.com/KyleM21/PhysicsGame and switching to the release branch. Then,
once this branch is downloaded as a zip and extracted or, alternatively, cloned, the
executable can then be run. PhysicsGame should then boot to the Main Menu.

These instructions are also available in the README.md files within the
repository. Links to the repository are also available through the website.

5.2 Sample Scenarios

Example Scenario 1:

The user opens up the website and starts the game. They hit play and will start
from level 1. Level 1 will consist of getting a vehicle to a goal, and the user will have to
figure out how to make it happen. Upon completion of this level, the user will be
allowed to move on to level 2. Completion of these levels will require the modification
of the vehicle in some way. There will be lessons on the concepts used in each level
available to the user.

Example Scenario 2:

The user downloads and runs the game on their computer. They are greeted by the
main menu, and decide to tweak some settings before beginning play. They click on the
settings button which activates the settings menu. They then adjust the volume using a
slider, and press the back button to return to the main menu. They then press Play to
begin a new game. They are then presented with Level One, which involves driving a
vehicle to a destination using physics concepts. They are guided by text which appears
and disappears as they continue through the level. Once the vehicle has successfully
reached its goal in the game world, the level completes and loads the next level, level
two. This continues similarly until the player presses Escape and Quit to Desktop, which
exits the game, or completes all levels, at which point they are returned to the Main
Menu.

On the next page you will see screenshots of the latest prototype.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

http://www.github.com/KyleM21/PhysicsGame

PhysicsGame

Created by Mit Bailey, Faycal Fedad, Jamison MacFarland, Kyle Marcoux, and lan Sodersjerna

This is the main menu, the player has four options: Play, Level Select, Settings, and Quit

Settings

Master Volume
ﬁ_
Music Volume
ﬁ_
Effects Volume
ﬁ_

®@ Enable Extra Hints

.

h
This is the settings menu, the player can customize volume and enable extra help.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Level Select

\

Level One Level Two Level Three

This is the level selection menu, the player can pick the level they wish to play and the
game will bring them to it.

Begin Level

This is the opening screen of level one, behind the “Begin Level” button is the vehicle the
player will be controlling.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

This is a Hint. Hints provide
useful information, and can
be dismissed by Left Clicking
[LeftClick] to dismiss.

This is the first part of level one, the goal is on the other side of the level and the player will need
to get the vehicle down the slope with enough speed to get to the goal.

This is a Hint. Hints provide
useful infermation, and can
be dismissed by Lefit Clicking
[LeftClick] to dismiss.

This is the player mid-air towards the goal of level one. In order to clear level one you need to
know how to build speed using the slope. There are hints on the side of the screen to guide the
player through the level.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

Success!

This is a Hint. Hints provide
seful infermation, and
:ﬂ d;:imi!‘;a": b:.rnl.r.‘e‘l’atrl::li::rling Next Leve I

[LefiClick] to dismiss.

Restart Level

Main Menu

Quit to Desktop

This is the ending screen of level one, giving the player choices on what to do next. It will appear
after making it into the goal.

6 References

[1] Project Website: https:/kylem?21.github.io/PhysicsGame/
[2] Project Repository: https://github.com/KyleM21/PhysicsGame

[3] Official IEEE SRS Document Template. IEEE Std 830-1998. 11/12/2021. IEEE
Comp. Society. http://www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

7 Point of Contact

For further information regarding this document and project, please contact Prof.
Daly at University of Massachusetts Lowell (james_daly at uml.edu). All materials in this
document have been sanitized for proprietary data. The students and the instructor
gratefully acknowledge the participation of our industrial collaborators.

Template based on IEEE Std 830-1998 for SRS. Modifications Revised: 11/10/2021 3:03 PM
(content and ordering of information)

https://kylem21.github.io/PhysicsGame/
https://github.com/KyleM21/PhysicsGame
http://www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

